$c = v\lambda$	$E = h \nu$
$E = \frac{hc}{\lambda}$	$\lambda = \frac{hc}{E}$

de Broglie Equation	Bohr Equation (72)
$\lambda = \frac{h}{}$	$E = -2.178 \times 10^{-18} J\left(\frac{Z^2}{n^2}\right)$
mv	Z = nuclear charge
m = particle mass	n = energy level

$$\frac{\frac{\text{Energy Change}}{\text{Between Two}}}{\frac{\text{Energy Levels}}{\text{Energy Levels}}} E = -2.178 \, x \, 10^{-18} J \left(\frac{Z^2}{n_{final}^2} - \frac{Z^2}{n_{initial}^2} \right)$$

$c = \nu \lambda$	$E = h \nu$
$E = \frac{hc}{\lambda}$	$\lambda = \frac{hc}{E}$

de Broglie Equation	Bohr Equation
	72\
h	$E = -2.178 \times 10^{-18} J\left(\frac{z}{z^2}\right)$
1 1 _ ""	$E = -2.1/8 \times 10^{-3} \left[-\frac{1}{2} \right]$
λ = —	n^2
mv	Z = nuclear charge
1	Z - nuclear charge
m = particle mass	n = energy level

$$\frac{\frac{\text{Energy Change}}{\text{Between Two}}}{\frac{\text{Energy Levels}}{\text{Energy Levels}}} E = -2.178 \, x \, 10^{-18} J \left(\frac{Z^2}{n_{final}^2} - \frac{Z^2}{n_{initial}^2} \right)$$

$$c = v\lambda \qquad E = hv$$

$$E = \frac{hc}{\lambda} \qquad \lambda = \frac{hc}{E}$$

de Broglie Equation	Bohr Equation (72)
$\lambda = \frac{h}{}$	$E = -2.178 \times 10^{-18} J\left(\frac{Z^{-1}}{R^{2}}\right)$
mv	Z = nuclear charge
m = particle mass	n = energy level

$$\frac{\frac{\text{Energy Change}}{\text{Between Two}}}{\frac{\text{Energy Levels}}{\text{Energy Levels}}} \quad E = -2.178 \ x \ 10^{-18} J \left(\frac{Z^2}{n_{final}^2} - \frac{Z^2}{n_{initial}^2} \right)$$

$c = v\lambda$	$E = h \nu$
$E = \frac{hc}{\lambda}$	$\lambda = \frac{hc}{E}$

de Broglie Equation h	$\frac{\text{Bohr Equation}}{E = -2.178 \text{ x } 10^{-18} J \left(\frac{Z^2}{H^2}\right)}$
$\lambda = \frac{\lambda}{mv}$	Z = nuclear charge
m = particle mass	n = energy level

$$\frac{\frac{\text{Energy Change}}{\text{Between Two}}}{\frac{\text{Energy Levels}}{\text{Energy Levels}}} \quad E = -2.178 \, x \, 10^{-18} J \left(\frac{Z^2}{n_{final}^2} - \frac{Z^2}{n_{initial}^2} \right)$$

$c = v\lambda$	$E = h \nu$
$E = \frac{hc}{\lambda}$	$\lambda = \frac{hc}{E}$

de Broglie Equ	ıation	Bohr Equation (=2)
$\lambda = \frac{h}{}$		$\overline{E = -2.178} \times 10^{-18} J\left(\frac{Z^2}{n^2}\right)$
mv		Z = nuclear charge
m = particle m	ass	n = energy level

$$\frac{\frac{\text{Energy Change}}{\text{Between Two}}}{\frac{\text{Energy Levels}}{\text{Energy Levels}}} E = -2.178 \times 10^{-18} J \left(\frac{Z^2}{n_{final}^2} - \frac{Z^2}{n_{initial}^2} \right)$$

$c = v\lambda$	$E = h \nu$
$E = \frac{hc}{\lambda}$	$\lambda = \frac{hc}{E}$

de Broglie Equation	Bohr Equation
h	$E = -2.178 \times 10^{-18} J\left(\frac{z}{z^2}\right)$
λ = 	$E = -2.176 \times 10$ $J(\frac{2}{m^2})$
mv	(n^{-})
mv	Z = nuclear charge
m = particle mass	n = energy level
m particle mass	I chergy level

$$\frac{\frac{\text{Energy Change}}{\text{Between Two}}}{\frac{\text{Energy Levels}}{\text{Energy Levels}}} E = -2.178 \, \text{x} \, 10^{-18} J \left(\frac{Z^2}{n_{final}^2} - \frac{Z^2}{n_{initial}^2} \right)$$

$c = v\lambda$	$E = h \nu$
$E = \frac{hc}{\lambda}$	$\lambda = \frac{hc}{E}$

de Broglie Equation	Bohr Equation (72)
$\lambda = \frac{h}{}$	$E = -2.178 \times 10^{-18} J\left(\frac{Z^2}{n^2}\right)$
mv	Z = nuclear charge
m = particle mass	n = energy level

$$\frac{\frac{\text{Energy Change}}{\text{Between Two}}}{\frac{\text{Energy Levels}}{\text{Energy Levels}}} \quad E = -2.178 \ x \ 10^{-18} J \left(\frac{Z^2}{n_{final}^2} - \frac{Z^2}{n_{initial}^2} \right)$$

$c = v\lambda$	E = h v
$E = \frac{hc}{\lambda}$	$\lambda = \frac{hc}{E}$

de Broglie Equation	Bohr Equation (72)
$\lambda = \frac{h}{}$	$E = -2.178 \times 10^{-18} J\left(\frac{Z^{-1}}{R^{2}}\right)$
mv	Z = nuclear charge
m = particle mass	n = energy level

$$\frac{\frac{\text{Energy Change}}{\text{Between Two}}}{\frac{\text{Energy Levels}}{\text{Energy Levels}}} E = -2.178 \times 10^{-18} J \left(\frac{Z^2}{n_{final}^2} - \frac{Z^2}{n_{initial}^2} \right)$$